
Lab: Forward Pass
ACTL3143 & ACTL5111 Deep Learning for Actuaries

Figure 1: The structure of a neural network.

At each node in the hidden and output layers, the value z is calculated as a weighted sum of
the node outputs in the previous layer, plus a bias. In other words:

z = Xw + b

1

where X is a n × p matrix representing the weights, w is an p × q matrix representing the
weights (q representing the number of neurons in the current layer), and b is an n × q matrix
representing the biases. n represents the number of observations and p represents the dimension
of the input.

Example: Calculate the Neuron Values in the First Hidden Layer

X =
(

1 2
3 −1

)
, w =

(
2

−1

)
, b =

(
1
1

)

We can calculate the neuron value as z follows:

z = Xw + b

=
()()

+
()

=
()

+
()

=
(

1
8

)

Alternatively, one can use Python:

import numpy as np
X = np.array([[1, 2], [3, -1]])
w = np.array([[2], [-1]])
b = np.array([[1], [1]])
print(X @ w + b)

[[1]
[8]]

Exercises

1. (2 × 2 matrices) Calculate z, given:

2

1. X =
(

1 2
2 1

)
w =

(
1
1

)
b =

(
0
0

)

2. X =
(

1 −1
0 5

)
w =

(
−1
8

)
b =

(
3
3

)
2. (3 × 3 matrices) Calculate z, given:

1. X =

4 4 0
2 2 4
2 4 1

 w =

 1
1

−1

 b =

2
2
2

2. X =

 6 −6 −2
−3 −1 −5
1 1 −7

 w =

 4
4

−8

 b =

0
0
0

3. (non-square matrices) Calculate z, given:

1. X =
(

1 0 1
1 2 1

)
w =

1
2
1

 b =
(

2
2

)

2. X =

1 −1
0 5
2 −2

 w =
(

5
−7

)
b =

1
1
1

4. If X is a 2 × 3 matrix, what does this say about the neural network’s architecture? What

about a 3 × 2 matrix?

Activation Functions

The result of z = Xw + b will be in the range (−∞, ∞). However, sometimes we might want
to constrain the values of z. We apply an activation function to z to do this. Activation
functions include:

• Sigmoid: S(zi) = 1
1+e−zi

, constrains each value in z to (0, 1)
• Tanh: tanh(zi) = e2zi −1

e2zi +1 , constrains each value in z to (−1, 1).
• ReLU: ReLU(zi) = max(0, zi), only activates for a value of z if it is positive.
• Softmax: σ(zi) = ezi

ΣK
j=1ezj . This maps the values in z so that each value is in [0, 1] and

the sum is equal to 1. This is useful for representing probabilities and is often used for
the output layer.

3

Example: Applying Activation Functions

Given z =
(

1
8

)
, calculate the resulting vector a = activation(z) using the four activation

functions above.

• Sigmoid:

S(z) =

• Tanh:

tanh(z) =

• ReLU

ReLU(z) =

• Softmax

σ(z) =

Exercises

1. Given z =
(

8
6

)
, calculate the resulting vector a = activation(z) using the four activation

functions above.

2. Given z =

−8
9

−3

, calculate the resulting vector a = activation(z) using the four

activation functions above.

4

3. For extra practice, try calculating the vector a, using the results of the exercises in section
1.

Final Output

Example: Calculate the Final Output

1. With the activations, weights, and activation functions given in the above figure and a
constant bias of 1 for each node, calculate the values of A, B, C, and D.

2. If the C node represents “YES” and the D node represents “NO”, what final value is
predicted by the neural network?

Hint: Write out

1. The input matrix X (should be 1 × 3):

X =
()

.

5

2. The weight matrix w1 between the input layer and the first hidden layer (should be
3 × 2):

w1 =

 , b1 =

()
.

3. The weight matrix w2 between the first hidden layer and the output layer (should be
2 × 2):

w2 =
()

, b2 =
()

.

See more details in maths-of-neural-networks.ipynb.

6

maths-of-neural-networks.ipynb

	Example: Calculate the Neuron Values in the First Hidden Layer
	Exercises
	Activation Functions
	Example: Applying Activation Functions
	Exercises

	Final Output
	Example: Calculate the Final Output

