
Lab: Python for Data Science
ACTL3143 & ACTL5111 Deep Learning for Actuaries

Data Science Libraries

A couple of fundamental data science packages in Python are NumPy and Pandas. NumPy is
a package for handling matrices and vector math, while Pandas handles dataframes and data
wrangling.

Libraries are imported using the import keyword:

import numpy

You can set an alias to the libraries you are importing. Usually this is done to simplify the
name of a long library.

import numpy as np
import pandas as pd

You can also import specific functions from a library by using the from keyword:

from sklearn.preprocessing import StandardScaler

In this lab, we will be working with two libraries used for data processing, NumPy and
Pandas.

1

A Note on Installing Libraries

If you have successfully installed Anaconda onto your system, you should already have NumPy
and Pandas installed as well. However, if for some reason you do not have a particular library
installed, or you would like to update a particular library, you can use the command line to
install new packages.

You can either open up Command Prompt/Terminal and type:

pip install numpy

The pip method will also work on Anaconda Prompt. This will install the libraries onto
your machine. When installing libraries, it is highly recommended that you create a Conda
environment, as this allows you to install and manage separate sets of libraries for each
Python project you are working on.

For a tutorial on how to set up your own environments, see https://docs.conda.io/projects/conda/en/latest/user-
guide/concepts/environments.html

NumPy

NumPy is a package used for scientific computing in Python, with the ability to perform
advanced mathematical operations, linear algebra, and vectorisation. Core to the NumPy
package is the NumPy array.

NumPy 1D arrays

Unlike lists in base Python, NumPy arrays can only work with numerical data.
NumPy arrays are also faster and consumes less memory than Python lists (source:
numpy.org/doc/stable/user/absolute_beginners.html).

l1 = [1,1,1]
l2 = [2,2,2]

a1 = np.array(l1)
a2 = np.array(l2)

#What do you notice?
print(l1 + l2)
print(a1 + a2)

2

[1, 1, 1, 2, 2, 2]
[3 3 3]

As you can see in the above code snippet, NumPy arrays are designed for linear algebra
operations.

Other operations you can do include adding and multiplying arrays by a constant, calculating
determinants of matrices, and even calculating eigenvalues and eigenvectors:

a1 + 3 #adds 3 to each element of the array, returns an error if done to a list
a1 * 3 #multiplies each element by 3

array([3, 3, 3])

m1 = np.array([[2,4],[1,3]]) #creating a 2D array, i.e. a matrix
print(m1)

print(np.linalg.det(m1)) #Determinant
print(np.linalg.eig(m1)) #Eigenvalues and eigenvectors

[[2 4]
[1 3]]

2.0
EigResult(eigenvalues=array([0.43844719, 4.56155281]), eigenvectors=array([[-0.93153209, -0.84212294],

[0.36365914, -0.5392856]]))

You can create arrays using ranges or linearly spaced sequences:

array_range = np.arange(5)
array_lin = np.linspace(start = 0, stop = 1, num = 6)

print(array_range)
print(array_lin)

[0 1 2 3 4]
[0. 0.2 0.4 0.6 0.8 1.]

NumPy 2D arrays

As mentioned beforehand, you can create a matrix by feeding a list of lists into np.array():

3

m1 = np.array([[2,4],[1,3]])

You can also create matrices of zeroes and identity matrices:

m_zero = np.zeros([3,3]) #3 x 3 matrix
print(m_zero)

m_ones = np.ones([3,3])
print(m_ones)

m_id = np.identity(3)
print(m_id)

[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]

[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]]

[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]

Pandas

Pandas is a Python library used for working with tabular data. It contains tools for data
manipulation, time series, and data visualisation. Pandas can be considered a Python equivalent
to dplyr, and core to Pandas is the DataFrame object, which is analogous to R’s data.frame
type.

import pandas as pd

DataFrames

For this lab we will be working with the Titanic machine learning dataset - a legendary dataset in
the data science community. It is available at https://www.kaggle.com/competitions/titanic/data,
and we will specifically be using train.csv.

To use the dataset in Google Colab, we need to upload and then import it. To see which
datasets are available in Google Colab, click the folder icon on the sidebar. Here, you can see

4

the datasets you have uploaded, as well as any sample datasets that are already built into
Google Colab. To upload files, click the upload icon that appears and select the file that you
want to upload.

Figure 1: Google Colab Files

We will import the dataset using Pandas’ read_csv() function.

titanic = pd.read_csv("train.csv")

This creates a DataFrame object, which is a 2-dimensional, tabular data structure.

There are a number of methods available in Pandas to inspect your data, including .head()
and .info().

titanic.head() #much like the head() function in R, this method prints the first 5 rows of the dataset.

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked

0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S

titanic.tail(10) # Prints last 10 rows

5

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked

881 882 0 3 Markun, Mr. Johann male 33.0 0 0 349257 7.8958 NaN S
882 883 0 3 Dahlberg, Miss. Gerda Ulrika female 22.0 0 0 7552 10.5167 NaN S
883 884 0 2 Banfield, Mr. Frederick James male 28.0 0 0 C.A./SOTON 34068 10.5000 NaN S
884 885 0 3 Sutehall, Mr. Henry Jr male 25.0 0 0 SOTON/OQ 392076 7.0500 NaN S
885 886 0 3 Rice, Mrs. William (Margaret Norton) female 39.0 0 5 382652 29.1250 NaN Q
886 887 0 2 Montvila, Rev. Juozas male 27.0 0 0 211536 13.0000 NaN S
887 888 1 1 Graham, Miss. Margaret Edith female 19.0 0 0 112053 30.0000 B42 S
888 889 0 3 Johnston, Miss. Catherine Helen "Carrie" female NaN 1 2 W./C. 6607 23.4500 NaN S
889 890 1 1 Behr, Mr. Karl Howell male 26.0 0 0 111369 30.0000 C148 C
890 891 0 3 Dooley, Mr. Patrick male 32.0 0 0 370376 7.7500 NaN Q

titanic.info() # Gives a list of columns, their counts and their types, akin to the str() function in R.

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
Column Non-Null Count Dtype

--- ------ -------------- -----
0 PassengerId 891 non-null int64
1 Survived 891 non-null int64
2 Pclass 891 non-null int64
3 Name 891 non-null object
4 Sex 891 non-null object
5 Age 714 non-null float64
6 SibSp 891 non-null int64
7 Parch 891 non-null int64
8 Ticket 891 non-null object
9 Fare 891 non-null float64
10 Cabin 204 non-null object
11 Embarked 889 non-null object

dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB

Selecting columns of a Pandas DataFrame is done using square brackets notation:

titanic["Age"] # Selecting "Age" column from dataset

0 22.0
1 38.0

6

2 26.0
3 35.0
4 35.0

...
886 27.0
887 19.0
888 NaN
889 26.0
890 32.0
Name: Age, Length: 891, dtype: float64

titanic[["Sex","Age"]] # Selecting multiple columns

Sex Age

0 male 22.0
1 female 38.0
2 female 26.0
3 female 35.0
4 male 35.0
...
886 male 27.0
887 female 19.0
888 female NaN
889 male 26.0
890 male 32.0

There are several ways of selecting rows in a DataFrame, including selecting by row number
using the square bracket notation or the .iloc method, or selecting by row name using the
.loc method.

titanic[4:9] # Selecting rows by the index (can be different to row number)

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked

4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
5 6 0 3 Moran, Mr. James male NaN 0 0 330877 8.4583 NaN Q
6 7 0 1 McCarthy, Mr. Timothy J male 54.0 0 0 17463 51.8625 E46 S
7 8 0 3 Palsson, Master. Gosta Leonard male 2.0 3 1 349909 21.0750 NaN S
8 9 1 3 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27.0 0 2 347742 11.1333 NaN S

7

titanic.iloc[4:9] # Selecting rows by their row numbers

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked

4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
5 6 0 3 Moran, Mr. James male NaN 0 0 330877 8.4583 NaN Q
6 7 0 1 McCarthy, Mr. Timothy J male 54.0 0 0 17463 51.8625 E46 S
7 8 0 3 Palsson, Master. Gosta Leonard male 2.0 3 1 349909 21.0750 NaN S
8 9 1 3 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27.0 0 2 347742 11.1333 NaN S

titanic.set_index("Name", inplace=True) #sets the "Name" column as the index
By setting inplace = True, we modify the existing DataFrame rather than creating a new one.
In other words, we do not need to assign it back to the titanic variable.

Selecting rows using .loc
titanic.loc[["Allen, Mr. William Henry", "Moran, Mr. James"]]

PassengerId Survived Pclass Sex Age SibSp Parch Ticket Fare Cabin Embarked
Name

Allen, Mr. William Henry 5 0 3 male 35.0 0 0 373450 8.0500 NaN S
Moran, Mr. James 6 0 3 male NaN 0 0 330877 8.4583 NaN Q

When selecting both rows and columns, using .loc or .iloc is necessary:

titanic.iloc[4:9, [0, 3]] # Selecting rows 4 to 8, and columns 0 and 3

PassengerId Sex
Name

Allen, Mr. William Henry 5 male
Moran, Mr. James 6 male
McCarthy, Mr. Timothy J 7 male
Palsson, Master. Gosta Leonard 8 male
Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) 9 female

titanic.loc[["McCarthy, Mr. Timothy J", "Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)"], "Age"]

8

Name
McCarthy, Mr. Timothy J 54.0
Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) 27.0
Name: Age, dtype: float64

You can use the bracket notation to filter the dataset:

titanic[titanic["Age"] >= 18]

PassengerId Survived Pclass Sex Age SibSp Parch Ticket Fare Cabin Embarked
Name

Braund, Mr. Owen Harris 1 0 3 male 22.0 1 0 A/5 21171 7.2500 NaN S
Cumings, Mrs. John Bradley (Florence Briggs Thayer) 2 1 1 female 38.0 1 0 PC 17599 71.2833 C85 C
Heikkinen, Miss. Laina 3 1 3 female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
Futrelle, Mrs. Jacques Heath (Lily May Peel) 4 1 1 female 35.0 1 0 113803 53.1000 C123 S
Allen, Mr. William Henry 5 0 3 male 35.0 0 0 373450 8.0500 NaN S
...
Rice, Mrs. William (Margaret Norton) 886 0 3 female 39.0 0 5 382652 29.1250 NaN Q
Montvila, Rev. Juozas 887 0 2 male 27.0 0 0 211536 13.0000 NaN S
Graham, Miss. Margaret Edith 888 1 1 female 19.0 0 0 112053 30.0000 B42 S
Behr, Mr. Karl Howell 890 1 1 male 26.0 0 0 111369 30.0000 C148 C
Dooley, Mr. Patrick 891 0 3 male 32.0 0 0 370376 7.7500 NaN Q

This has reduced the dataset from 891 rows to 601.

If we wanted to combine multiple conditions together, we can use conditional operators.
However, Python’s usual conditional operators (and, or, not) will not work here, and instead
we will need to use symbols (&, |, !).

Selecting passengers whose ages are 18 and above and are in passenger class 3.
titanic[(titanic["Age"] >= 18) & (titanic["Pclass"] == 3)] #Note that we need to wrap each conditional statement in parentheses.

PassengerId Survived Pclass Sex Age SibSp Parch Ticket Fare Cabin Embarked
Name

Braund, Mr. Owen Harris 1 0 3 male 22.0 1 0 A/5 21171 7.2500 NaN S
Heikkinen, Miss. Laina 3 1 3 female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
Allen, Mr. William Henry 5 0 3 male 35.0 0 0 373450 8.0500 NaN S
Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) 9 1 3 female 27.0 0 2 347742 11.1333 NaN S
Saundercock, Mr. William Henry 13 0 3 male 20.0 0 0 A/5. 2151 8.0500 NaN S

9

PassengerId Survived Pclass Sex Age SibSp Parch Ticket Fare Cabin Embarked
Name

...
Markun, Mr. Johann 882 0 3 male 33.0 0 0 349257 7.8958 NaN S
Dahlberg, Miss. Gerda Ulrika 883 0 3 female 22.0 0 0 7552 10.5167 NaN S
Sutehall, Mr. Henry Jr 885 0 3 male 25.0 0 0 SOTON/OQ 392076 7.0500 NaN S
Rice, Mrs. William (Margaret Norton) 886 0 3 female 39.0 0 5 382652 29.1250 NaN Q
Dooley, Mr. Patrick 891 0 3 male 32.0 0 0 370376 7.7500 NaN Q

That line of code is quite longwinded, so if you wanted to filter your DataFrame in a more
concise way, you can use the .query() method:

titanic.query("Age >= 18 & Pclass == 3")

PassengerId Survived Pclass Sex Age SibSp Parch Ticket Fare Cabin Embarked
Name

Braund, Mr. Owen Harris 1 0 3 male 22.0 1 0 A/5 21171 7.2500 NaN S
Heikkinen, Miss. Laina 3 1 3 female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
Allen, Mr. William Henry 5 0 3 male 35.0 0 0 373450 8.0500 NaN S
Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) 9 1 3 female 27.0 0 2 347742 11.1333 NaN S
Saundercock, Mr. William Henry 13 0 3 male 20.0 0 0 A/5. 2151 8.0500 NaN S
...
Markun, Mr. Johann 882 0 3 male 33.0 0 0 349257 7.8958 NaN S
Dahlberg, Miss. Gerda Ulrika 883 0 3 female 22.0 0 0 7552 10.5167 NaN S
Sutehall, Mr. Henry Jr 885 0 3 male 25.0 0 0 SOTON/OQ 392076 7.0500 NaN S
Rice, Mrs. William (Margaret Norton) 886 0 3 female 39.0 0 5 382652 29.1250 NaN Q
Dooley, Mr. Patrick 891 0 3 male 32.0 0 0 370376 7.7500 NaN Q

In Pandas you can aggregate datasets using the .groupby() method:

titanic.groupby("Pclass").sum()["Survived"]

Pclass
1 136
2 87
3 119
Name: Survived, dtype: int64

10

Notice in the above line of code, we combined two methods. In Pandas, you can chain multiple
methods together, much like dplyr’s pipline operator (%>%) in R.

Select the names of passengers in class 3 who are 65 years of age or older.
titanic.reset_index().query("Pclass == 3 & Age >= 65")["Name"]

116 Connors, Mr. Patrick
280 Duane, Mr. Frank
851 Svensson, Mr. Johan
Name: Name, dtype: object

Exercises

1. Filter the dataset to people where Embarked is Q.
2. Filter the dataset to people 18 years or older, and Fare is less than 10
3. Filter the dataset to people with an above-median age.
4. What is the highest value of Fare for female passengers in class 2?

Series

Let’s select the Ticket column:

titanic["Ticket"]

Name
Braund, Mr. Owen Harris A/5 21171
Cumings, Mrs. John Bradley (Florence Briggs Thayer) PC 17599
Heikkinen, Miss. Laina STON/O2. 3101282
Futrelle, Mrs. Jacques Heath (Lily May Peel) 113803
Allen, Mr. William Henry 373450

...
Montvila, Rev. Juozas 211536
Graham, Miss. Margaret Edith 112053
Johnston, Miss. Catherine Helen "Carrie" W./C. 6607
Behr, Mr. Karl Howell 111369
Dooley, Mr. Patrick 370376
Name: Ticket, Length: 891, dtype: object

11

When selecting a single column of the DataFrame, Pandas returns what is known as a Series.
This is a data structure used to represent one-dimensional data, much like a list or NumPy
array. They are more flexible than NumPy arrays because they can hold non-numeric data
types. However, they are not as flexible as lists because they can only hold one datatype at a
time. If you try to create a Series with values of different data types, Pandas will convert all
the elements of the Series into strings.

You can create series from lists, tuples, and NumPy arrays
l = ["The", "quick", "brown", "fox"]
t = (3,1,4,1,5,9)
a = np.array(t)
mix = ["this", 3, "will", True, "convert"]

print(pd.Series(l))
print(pd.Series(t))
print(pd.Series(a))
print(pd.Series(mix)) #converted into strings

0 The
1 quick
2 brown
3 fox
dtype: object
0 3
1 1
2 4
3 1
4 5
5 9
dtype: int64
0 3
1 1
2 4
3 1
4 5
5 9
dtype: int64
0 this
1 3
2 will
3 True
4 convert

12

dtype: object

13

	Data Science Libraries
	A Note on Installing Libraries

	NumPy
	NumPy 1D arrays
	NumPy 2D arrays

	Pandas
	DataFrames
	Exercises
	Series

