Skip to content

API Reference

This section provides comprehensive documentation for all approxbayescomp classes, functions, and modules. The API documentation is automatically generated from the source code docstrings.

Overview

The approxbayescomp package is organized into several key modules:

  • SMC - Sequential Monte Carlo ABC implementation
  • Prior - Prior distribution classes
  • Distance - Distance metrics for comparing observations
  • Simulate - Data simulation functions
  • Plotting - Visualization tools for ABC results
  • Weighted Statistics - Weighted statistical functions
  • Utilities - Helper functions and utilities

Quick Reference

Core Classes

Class Purpose Module
Model ABC model specification approxbayescomp.smc
Population ABC population container approxbayescomp.smc
Psi Tolerance schedule class approxbayescomp.smc
IndependentPrior Independent prior distributions approxbayescomp.prior
IndependentUniformPrior Independent uniform priors approxbayescomp.prior

Key Functions

Function Purpose Module
smc() Run SMC-ABC algorithm approxbayescomp.smc
compute_psi() Compute tolerance schedule approxbayescomp.smc
simulate_claim_data() Simulate claim data approxbayescomp.simulate
l1(), l2(), wasserstein() Distance metrics approxbayescomp.distance
plot_posteriors() Plot posterior distributions approxbayescomp.plot
weighted_quantile() Weighted quantiles approxbayescomp.weighted