Actuarial Neural Networks and Uncertainty

AFRIC 2 Patrick Laub, UNSW Joint work with Benjamin Avanzi, Eric Dong, and Bernard Wong

They're not *inherently interpretable*, so just have to look at inputs and outputs from the black box

They're not *inherently interpretable,* so just have to look at inputs and outputs from the black box

NN models typically just output a prediction without any sense of its *confidence*

They're not *inherently interpretable,* so just have to look at inputs and outputs from the black box

NN models typically just output a prediction without any sense of its *confidence*

.: Cannot *trust* the NN models. **Dealbreaker**

They're not *inherently interpretable,* so just have to look at inputs and outputs from the black box

NN models typically just output a prediction without any sense of its *confidence*

.:. Cannot *trust* the NN models. **Dealbreaker**

Now let's focus on actuarial problems.

Claim size prediction

👤 Age	🖨 Age	🚵 Type
25	3	🖨 Sedan
40	5	SUV 💝
19	1	🚵 Sports Car
60	10	🚘 Hatchback

Claim size prediction

	Age	稀 Age	🚵 Type	
	25	3	🖨 Sedan	
	40	5	SUV 💝	\longrightarrow
_	19	1	🚵 Sports Car	
_	60	10	🚘 Hatchback	

Claim size prediction

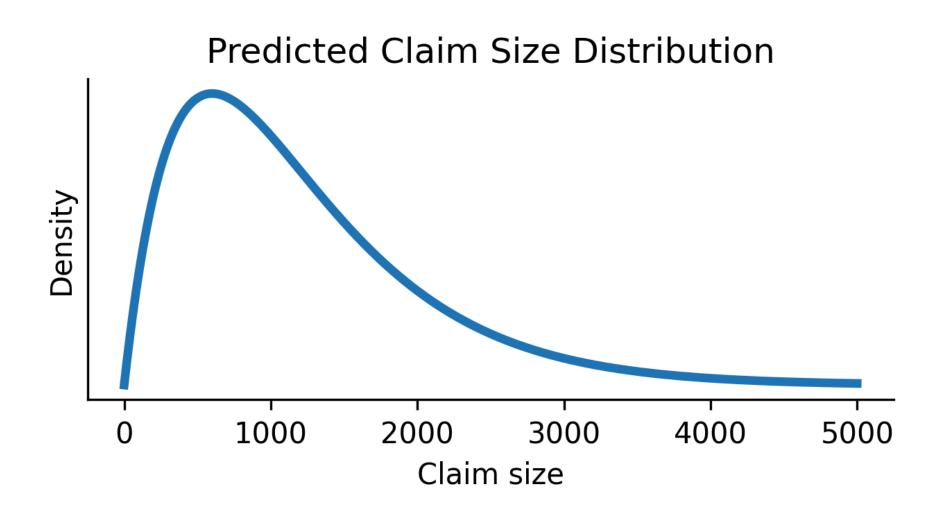
👤 Age	稀 Age	🚵 Type		Cost
25	3	🖨 Sedan		₿ \$1,200
40	5	SUV 💝	\longrightarrow	\$2,500
19	1	🚵 Sports Car		\$3,800
60	10	🚘 Hatchback		\$800

Claim size prediction

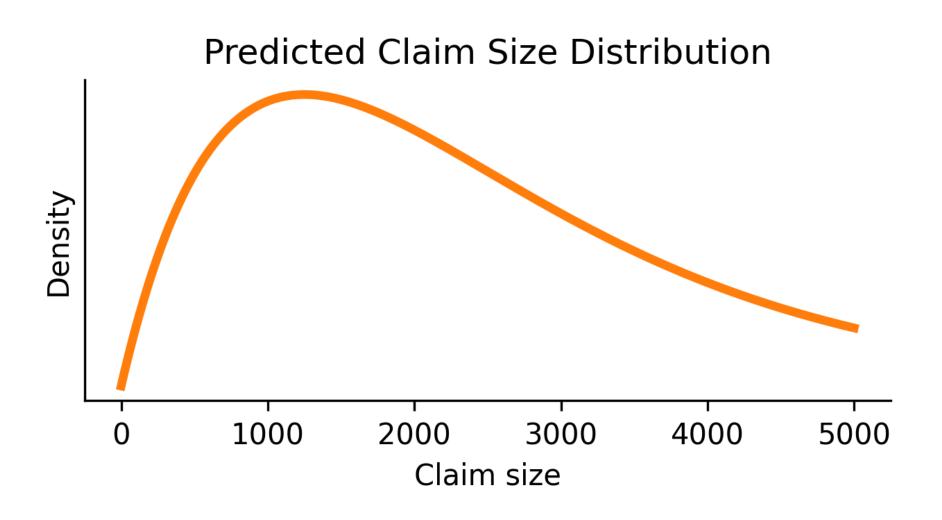
👤 Age	希 Age	🚵 Type		Cost
25	3	a Sedan		₿ \$1,200
40	5	SUV 💝	\longrightarrow	\$2,500
19	1	🚵 Sports Car		\$3,800
60	10	🚘 Hatchback		\$800

What's wrong? Not enough rows? Not enough columns?

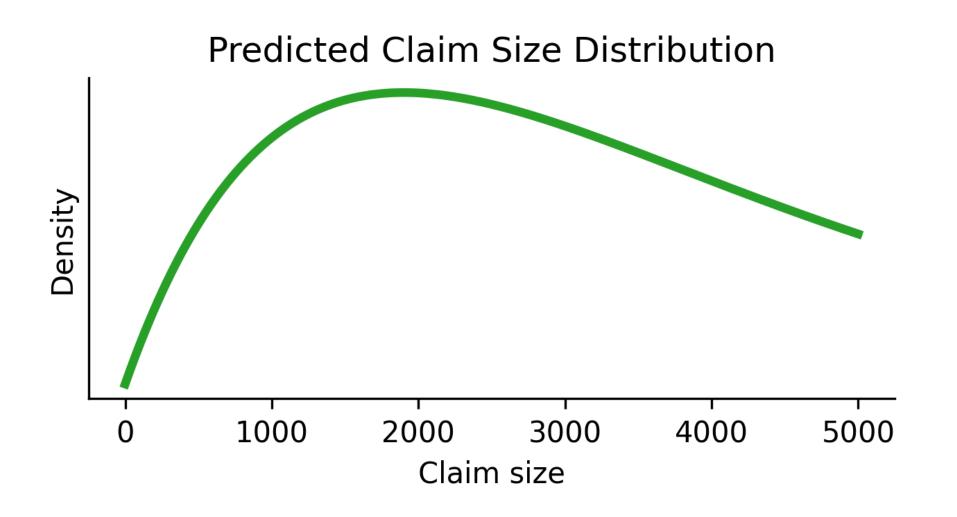
Customer $1 = (25, 3, \clubsuit)$



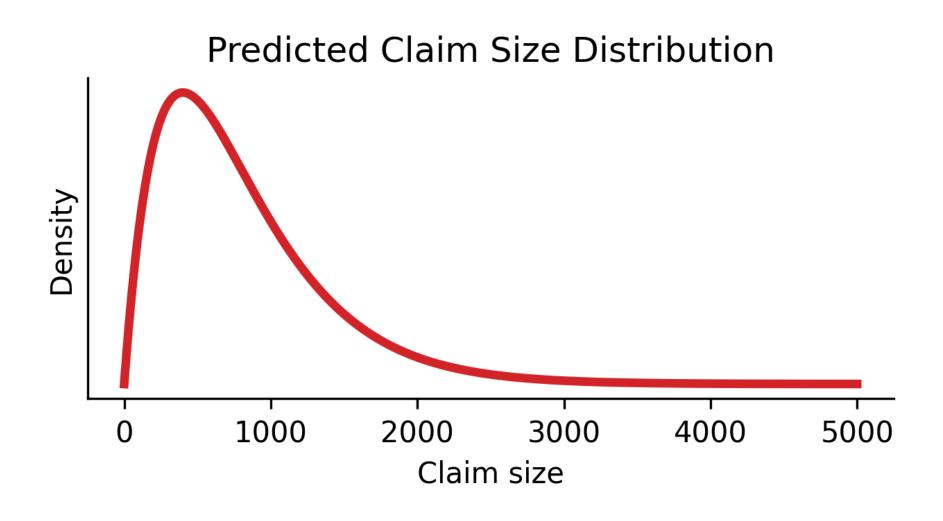
Customer 2 = (40, 5, 🕽)



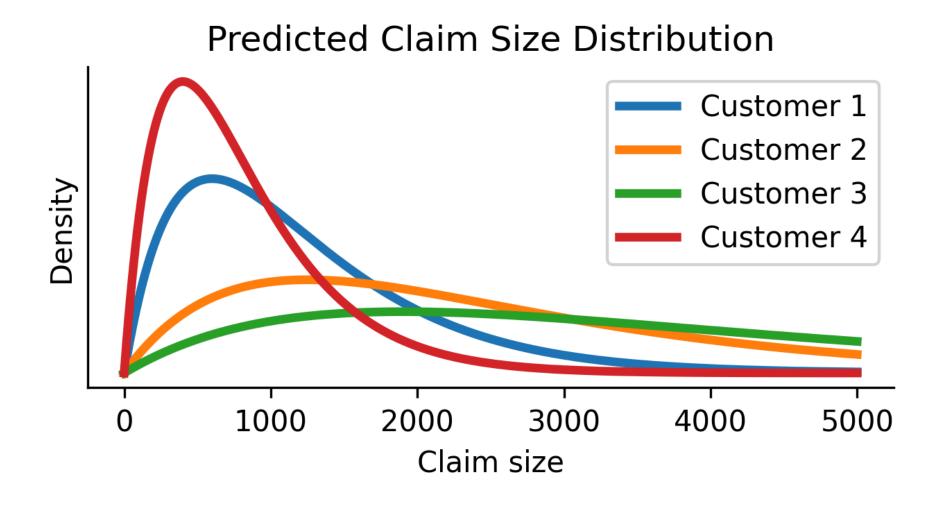
Customer 3 = (19, 1,)



Customer 4 = (60, 10, 🛋)



All customers



Current solutions

A generalised linear model

A gamma GLM with a log link function:

$$egin{aligned} Y|\mathbf{X} &\sim ext{Gamma}(\dots,\dots) \ \mathbb{E}[Y|\mathbf{X}] &= ext{exp} \Big\{ eta_0 + eta_1 \cdot ext{Age} + eta_2 \cdot ext{Car Age} + eta_3 \cdot ext{Type} \Big\} \end{aligned}$$

A simple model, easy to train and interpret, but...

A generalised linear model

A gamma GLM with a log link function:

$$egin{aligned} Y|\mathbf{X} &\sim ext{Gamma}(\dots,\dots) \ \mathbb{E}[Y|\mathbf{X}] &= ext{exp} \Big\{ eta_0 + eta_1 \cdot ext{Age} + eta_2 \cdot ext{Car Age} + eta_3 \cdot ext{Type} \Big\} \end{aligned}$$

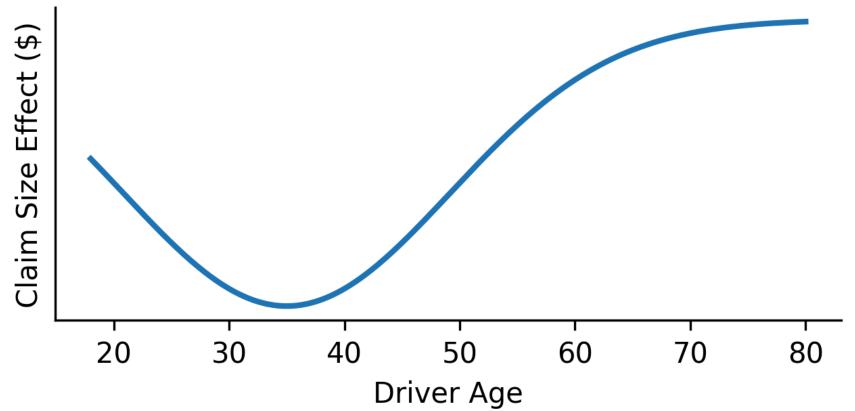
A simple model, easy to train and interpret, but...

! GLMs can be

1. Bad at regression

2. Bad at distributional regression

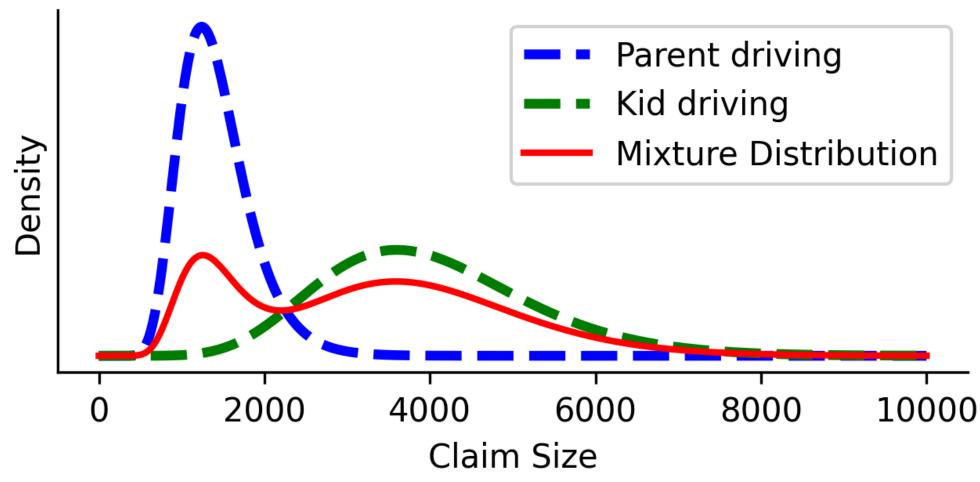
Example 1: Non-monotonicity



GLMs cannot (easily) do this \longrightarrow Use a neural network

Example 2: Multi-modality

Claim Size Distribution



CANN

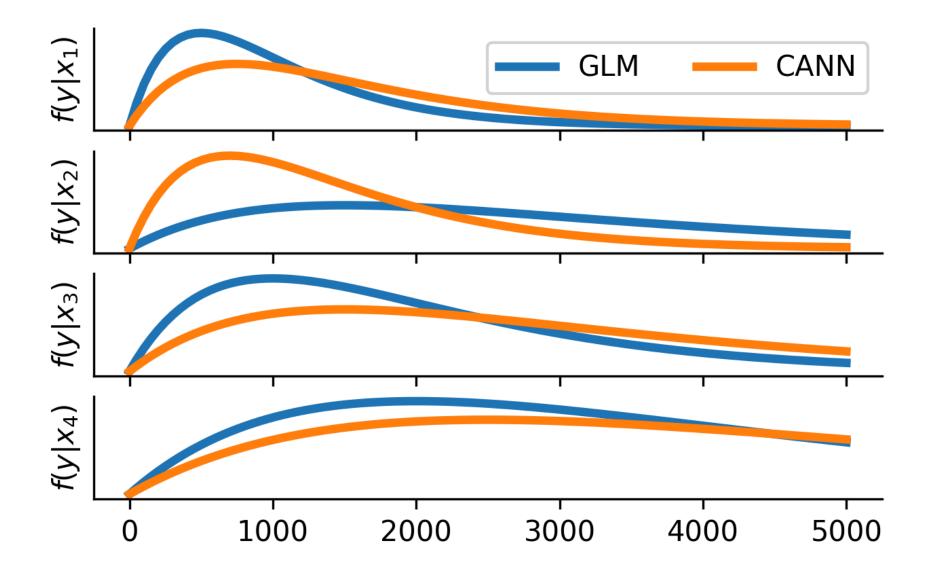
"Combined Actuarial Neural Network" by Schelldorfer and Wüthrich (2019):

- 1. Fit a GLM with β and link function $g(\cdot)$
- 2. Fit a neural network \mathcal{M}_{CANN} that predicts

$$\mathbb{E}[Y|oldsymbol{X}=oldsymbol{x}]=g^{-1}\Big(\langleoldsymbol{eta},oldsymbol{x}
angle+\mathcal{M}_{ ext{CANN}}(oldsymbol{x};oldsymbol{w}_{ ext{CANN}})\Big).$$

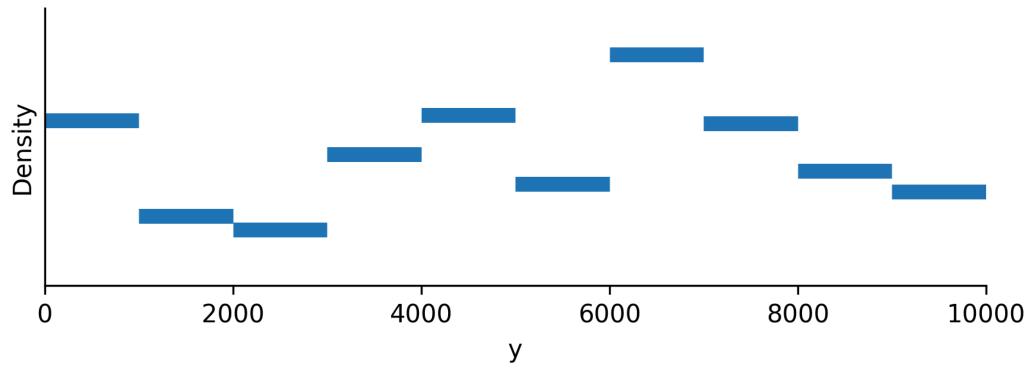
This makes the 'regression' part smarter, but not the 'distribution' part

Shifting the predicted distributions



Deep Distributional Regression

Stepwise Distribution

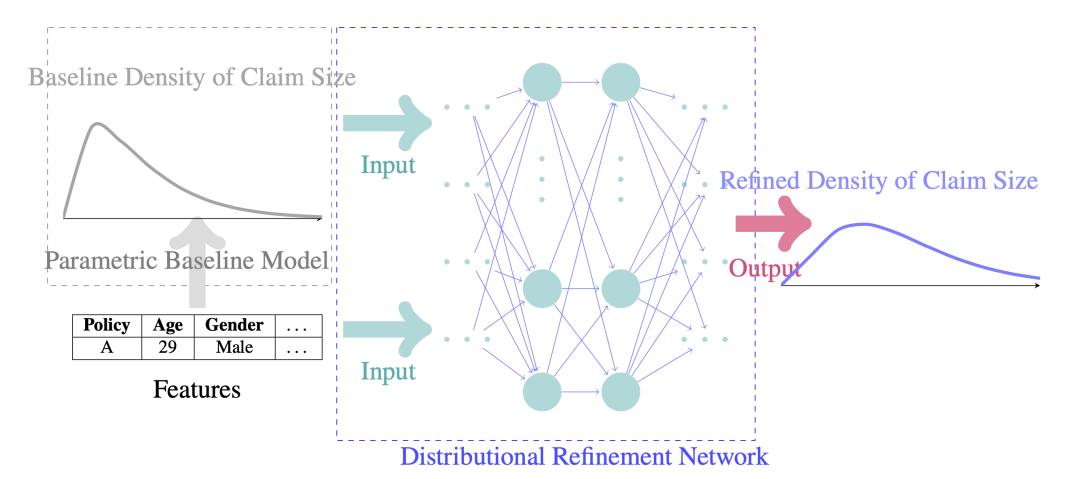


Deep Distributional Regression Stepwise Distribution Density 2000 4000 6000 8000 10000 0 У

More flexible regression (NN), and most flexible distributional outputs (non-parametric), **uninterpretable**

Distributional Refinement Network

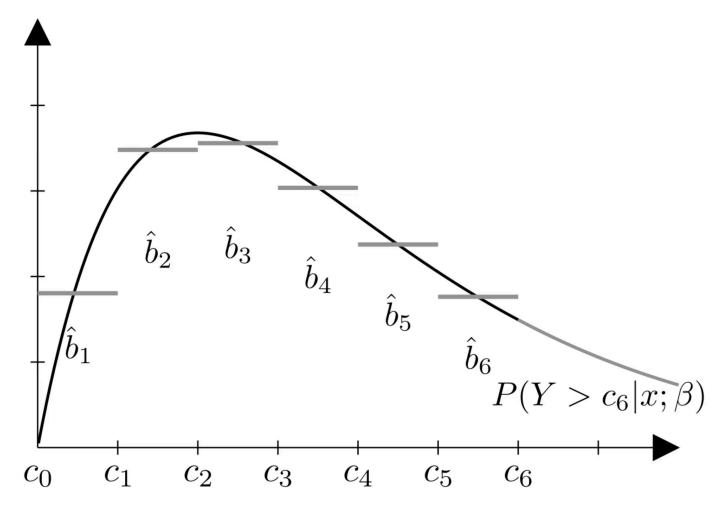
Distributional Refinement Network



DRN first uses a trusted baseline model, then makes small adjustments to it

Baselines

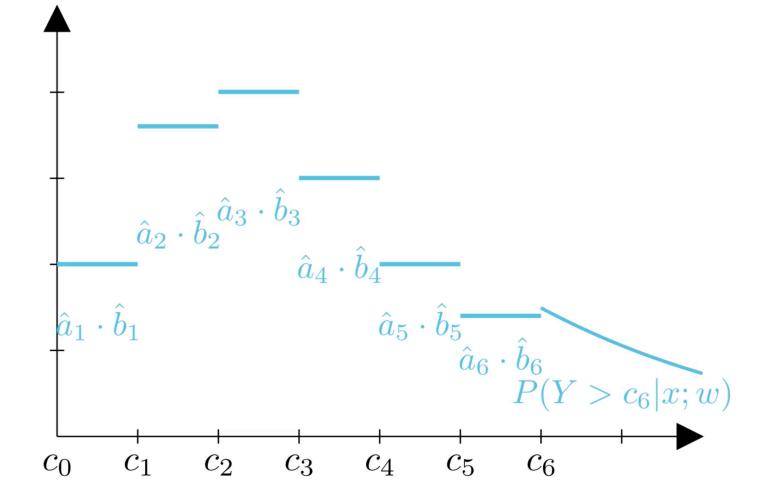
Add in a baseline model, and "discretise" it



Baseline Probability Masses

Adjustments

Then adjust the heights of the bins with NN:



DRN output distribution

Loss and Regularisation

We minimise

Loss = Distributional Accuracy (e.g. NLL) + Baseline Resemblance (e.g. KL Div.) + Density Smoothness (e.g. Second-Order Difference)

Loss and Regularisation

We minimise

Loss = Distributional Accuracy (e.g. NLL) + Baseline Resemblance (e.g. KL Div.) + Density Smoothness (e.g. Second-Order Difference)

So we have a *lever* to control how far the NN can deviate from a *trusted inherently interpretable baseline*.

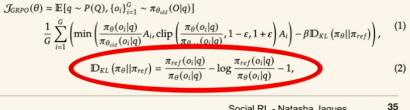
This is used in ChatGPT

State-of-the-art LLMs still use this approach

S OpenAI

"Following Jaques et al. (2017; 2019), we use a KL constraint to prevent the fine-tuned model from drifting too far from the pretrained model."

- Fine-Tuning Language Models from Human Preferences (2019)
- Learning to summarize from human feedback (2020)
- InstructGPT / ChatGPT (2022)
- <u>Direct Preference Optimization (DPO)</u> (2024)



Social RL - Natasha Jagues

The KL term in AI chat models

Code: Training DRN

Loaded the datasets already, then make the cutpoints:

from drn import GLM, DRN, drn_cutpoints, train

```
left = 0
right = Y_train.max().item() * 1.1
```

```
cutpoints = drn_cutpoints(left, right, proportion=0.1, y=y_train)
print(cutpoints)
```

[0.00, 1.36, 2.72, 4.09, 5.45, 6.81, 8.17, 9.53, 10.90, 12.26, 13.62, 14.98, 16.34, 17.70, 19.07, 20.43, 21.79, 23.15, 24.51, 25.88, 27.24, 29.96, 32.69, 55.84, 132.10, 155.26, 179.77]

Then train the GLM and the DRN:

glm_model = GLM.from_statsmodels(X_train, Y_train, distribution="gamma")

drn_model = DRN(glm_model, cutpoints, hidden_size=256, num_hidden_layers=2)

train(drn_model, train_dataset, val_dataset, epochs=100, patience=5)

Code: Training CANN, MDN, DDR

from drn import CANN, MDN, DDR

```
cann_model = CANN(glm_model)
train(cann_model, train_dataset, val_dataset, epochs=100, patience=5)
cann_model.update_dispersion(X_train, Y_train)
```

```
mdn_model = MDN(X_train.shape[1])
train(mdn_model, train_dataset, val_dataset, epochs=100, patience=5)
```

```
ddr_model = DDR(X_train.shape[1], cutpoints)
train(mdn_model, train_dataset, val_dataset, epochs=100, patience=5)
```


Code: Distributional forecasts

glm_model.distributions(X_test[[1]])

Gamma(concentration: tensor([0.30]), rate: tensor([0.14]))

```
cann_model.distributions(X_test[[1]])
```

Gamma(concentration: tensor([0.29]), rate: tensor([0.14]))

mdn_model.distributions(X_test[[1]])

MixtureSameFamily(

Categorical(probs: torch.Size([1, 5]), logits: torch.Size([1, 5])),
Gamma(concentration: torch.Size([1, 5]), rate: torch.Size([1, 5])))

ddr_model.distributions(X_test[[1]])

Histogram(cutpoints: torch.Size([27]), prob_masses: torch.Size([1, 26]))

drn_model.distributions(X_test[[1]])

ExtendedHistogram(baseline: Gamma(concentration: tensor([0.30]), rate: tensor([0.14])), cutpoints: torch.Size([27]), prob_masses: torch.Size([1, 26]))

Conclusion

- More than just mean predictions
- Checkout Eric's drn package on pypi (major update coming in 2-3 weeks)
- Suggestions and questions welcome, thanks for your attention!

