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First problem

For a random vector X = (X, ..., Xy) with maximum M = max; Xj, the first problem we

consider is estimating
a(y) =PB(M > 7).

We construct estimators for this probability, which are in terms of

E(v) = > 1{X > 1},

i=1

the random variable which counts the number of X; which exceed ~.
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First glance at estimators

Our two main estimators in this setting are

a1 =y P(Xi>7)+(1- E()){E(y) = 2}, and

i=1

ZIP’X > ) - ZZPX >, X > 1)

i=1 j=i+1

[1- e+ EED =Wy > 3y
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Second problem

The next problem we consider is estimating

Bn(7) == E[YI{E(y) = n}]

for n=1,...,d and some random variable Y. We do not make any assumptions of
independence between the {X; > «} events themselves or between the events and Y.
The subcase of Y =1 a.s. has some interesting examples:

Bi(v) =P(M >~)=a(y), and Ba(y) =P(Xn > )

where X1y > XQ) > -+ > X(g) are the order statistics of X. The probability of a parallel
circuit falllng is a S|mp|e appllcatlon for P(X(ny > 7).

QACEMI
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General setup

Let A(y) = UL, Ai(7) be the union of events Ai(7),...,Aq(7) for an index parameter
v € R. We consider the problem of estimating P(A(y)) when the events are rare, that is,
P(A()) — 0 as v — oo. Define

d
a(y) =P(A(7) and  E(y) = > 1{A()}.

i=1

Note that we recover our introductory example by having A;(v) = {Xi > ~}. Aside from
this example, A(7) is quite general (a union of arbitrary events) and many interesting
events arising in applied probability and statistics can be formulated as a union. The
quantity 3,(y) is reminiscent of expected shortfall from risk management.

QACEMJ'
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Inclusion—exclusion

Vi

P(AU B U C) = P(A) + P(B) + P(C)

— [P(A, B) + P(A, C) + P(B, C)] + P(A, B, C) Secow
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Inclusion—exclusion

The inclusion—exclusion formula (IEF) provides a representation of a as a summation
whose terms are decreasing in size. The formula is, for A = U;A;,

ZIP(A ) — Z P(ALA) + -+ (1) P(Ay, ..., Ag)

_Z 1)'“%1@(@”

The IEF can rarely be used as its summands are increasingly difficult to calculate
numerically. The P(A;) terms are typically known, and the P(A;, A;) terms can frequently
be calculated, however the remaining higher-dimensional terms are normally intractable
for numerical integration algorithms (cf. the curse of dimensionality
[asmussen2007stochastic]).
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Bonferonni inequalities

Truncating the summation can lead to bias, and indeed by the Bonferroni inequalities we
have:

P(A) = P(UA) = a < Z]P’(A-) (Boole-Fréchet)

a> ZIP(A)fZIP(A,,A

i<j
a< ZIP(A )= Y P(ALA) + D P(AL AL A
i<j i<j<k

This higher-order intractability motivates our estimators which use the IEF rewritten in
terms of E =3, 1{Ai}.
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Constructing IEF estimators

Remember IEF:

d

w30 SR (4) = S0 e[ 1(4)]

i=1 =i  jel =i  jel

Proposition

Fori=1,...,d, S L{nerAy = (51{E > i}

Proof.

| \

S 1A = zd:Zn{njE,Aj,E — k)= zd:(’lf)n{E: K} = (f)ﬂ{f > i}

[1|=i k=i |I|=i k=i

v
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Estimators
d L d ' £
E [Z_:(—l)"l( JME >} = > (-1 E [(7)uiE > ]
) _EFy + IEFs 4 -+ IEF,

We present estimators which deterministically calculate the first larger terms of the IEF
and Monte Carlo (MC) estimate the remaining smaller terms using sample means of the
above.

*ACEMJ'
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First estimator

We begin by constructing the single-replicate estimator &1 where the first summand is
calculated and the remaining terms are estimated:

ap ;= Z]P)(A,-) + zd: [(_1)"*1(11—?)1{15 > I}]
=3 P(A)+ (1 - E)YI{E > 2}, using i(—nk—l(Z) =0.
i k=0

In identical fashion, the single-replicate estimator calculating the first two terms from the
IEF is

o ::ZIP(A,—) - Z]P(A,-7Aj) + ld [(—1)"*1(5)1{5 > i}]
:Z]P’(A,-) - ;P(A;,Aj) + [1 —E+ #]1{5 >3},
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General form of the estimators

Thus, for n € {1,...,d — 1},

n

Gn = i(q)"*l Sp(NA)+ [Z(fl)"(f)]ﬂ{E >n+1}. (1)

=i i€l i=0
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Properties of these estimators

Thus, {@1,...,a@q4-1} is a collection of estimators which allows the user to control the
computational division of labour between numerical integration and Monte Carlo
estimation. N.B. If we look at &y we get the CMC estimator 1{E > 1}.

The @, estimators are of decreasing variance in n, however each estimator carries the
assumption that one can perform accurate numerical integration for 1 up to n
dimensions. As numerical integration can be slow and unreliable in high dimensions we
focus on @1, and also show the numerical performance of .

In practice, theses estimators will exhibit very modest improvements when compared
against their truncated |IEF counterparts. When combined with importance sampling the
improvement is marked.

We do assume knowledge of marginal distributions.

*ACEMJ'

Efficient simulation for dependent rare events



Discussion of the a7 estimator

The estimator &1 has some nice interpretations. Recall the Boole—Fréchet inequalities

max P(A;) < a = P(A) < > P(A)=a. 2)

The stochastic part of a; is an unbiased estimate of @ — o < 0. That is to say, a3 MC
estimates the difference between the target quantity a and its upper bound given by the
Boole—Fréchet inequalities, @. Similarly, we often have

aly) ~ ZP(A:‘(Y)) ,1

for example when the A; exhibit a weak dependence structure. In this case, we can say
that @1 MC estimates the difference between « and its (first-order) asymptotic expansion.

QACEMJ'

!Using the standard notation that f(x) ~ g(x) means lim,_ o f(x)/g(x) = 1.
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Relation of the a, estimators to control variates

An alternative construction of {Qx1,...,Qq4_1} is to add control variates to the crude
Monte Carlo estimator ag. We begin by adding the control variate E to qp with weight

T € R:
ay =1{E > 1} — 7[E =Y _P(A)].
Setting 7 = 1 means this estimator simplifies to &;1. Next, we add the control variates E

and —1E(E — 1) to @, and setting the corresponding weights to 1 gives . This
pattern goes on.
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Importance sampling (first-order)

Standard IS theory says condition on A = U;A; = {E > 1} occuring. We use a mixture
distribution as a proposal. Say that we condition on A; with probability

L P(A) _ P(A)
PPEspA)” a o
Why? If P(Ai(7), Ai(7)) = o(P(Ai(v))) often occurs for all i # j, then

PIA | A = S5 ey ~PO)

fori=1,...,d.

as y — 0.
Now consider the measure

QY Zp, (7 |A) Vo eF,
which induces the likelihood ratio of L) := dQM /dP =a/E. As

1-E\ @
— 1 P _a m
a+(1— E)L{E>2}L a(1+ E) = under QY

A[ll

A= RZED]’ 3)

1 QACEMJ'
where the E!"! are iid from Q). Same as Adler et al. [adler1990introduction].
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Importance sampling (second-order)

Continuing in the same pattern, consider the second-order IS distributions where
{E > 2} occurs almost surely, to be applied to @>. Say that we choose to condition on
A N A;j with probability

P(Ai, Aj) (A:,A)
SmenP(Am A~ g

defining q := >, _; P(Ai, Aj). Now consider the measure

pij =

for1<i<j<d,

QNa) = piP(o/ | ALA) Vo €T,

i<j

which induces a likelihood ratio of

j . dQP q 9 29

P~ Y, U{AAY  (5)  E(E-1)°

Thus, after simplifying, the estimator &, under Q@ is

.~ 2q 1
ay =0 — — — 7 4
? R ; E,lz] A(CEzU'
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.
Example: a(1) = P(max{X1, X2} > 1)

Region of interest
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.
Example: a(1) = P(max{X1, X2} > 1)

First-order importance sampling

QACEMJ'
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.
Example: a(1) = P(max{X1, X2} > 1)

Second-order importance sampling
e : : q

*ACEMJ'
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Importance sampling (extra requirements)

First-order IS:
o can simulate from P(- | A;),
o can calculate the P(A;).
Second-order IS:
o can simulate from P(- | Ai, A)),
o can calculate the P(A;) and P(A;, Aj).

Normally (at least for extremes) can calculate P(A;) and P(A;, A;) with MATHEMATICA
or MATLAB. The prohibitive part is being able to simulate from conditionals.

Efficient simulation for dependent rare events



...
Second problem — 3,

Now, we turn our attention to the estimation of
Bn = E[YL{E > n}].

We start with 81 and the partition

d

i=1
This gives us
Br=E[Y | A]P(A1) + E[YL{A:} | As] P(A2)
+ - +E[YI{AL... Ag_1} | Ad] P(Ad).
If we assume it is possible to sample from the P( - | A;) conditional distributions (same as
for a[f]) then each of these conditional expectations can be estimated by sample means:

d [R/d]

B3 féj‘d)} > Vi t{AT A (6)

Here, the Y;, and 1{-};, are sampled independently and conditional on A;. The Hacems
following proposition gives the partition of the event {E > i}:
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Partition

Proposition

Consider a finite collection of events {A1,...,Adq} and for each subset | C {1,2,...,d}

define °
B :=(A, G= () AL
jel kel
k<max |
Then

{E>=my= ] B =J BG. (7)

[l|=m |[l|=m

Moreover, the collection of sets {B;C; : |I| = m} is disjoint.

?Using the convention that Ny = Q.
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General estimators of 3

This proposition implies that
s=e[vi{ U s} =e[vi{Usc}| =Y E[vi{a}|B]P(B
l|=n [l|=n l|=n

/) are available, and (ii) it is possible to
P(- .

Therefore, if (i) reliable estimates of P (B
| Bi), then the following is an unbiased

simulate from the conditional measures
estimator of E[Y1{E > n}]:
R/(4)1
(8)

B, = F(B)) Y1, {Ci}i,r .
= 2 Ry 2 M

|l|=n
Here, similar to before, Y; . and 1{-},, denote independent sampling conditioned on B,

QACEMI
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Efficiency (definition)

An estimator p., of some rare probability p, which satisfies Ve > 0

. ar p. . Var p. . Var p.
lim sup 2{’? =0 lim sup %pw < o0 lim sup %pa, =0
y—00 P~ y—00 Pfy y—00 Pfy

has logarithmic efficiency, bounded relative error, or vanishing relative error respectively.
v
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Efficiency (for our estimators)

Proposition

If for the estimator & (Ve > 0)

limsup maxi<; P(Ai(7), Ai(7)) =0, limsup maxi<; P(Ai(7), Ai(y ))
oo Maxk P(A(7))** © b maxk P(Ak(7))?2

then the estimator has LE, BRE respectively.

Proposition

The estimator B(7) has BRE if

-.P(B
Iimsupimax“lf (B)

y—o0 ﬂn('}/) =0

*ACEMJ'
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Efficiency results

o If the A; are independent events then the estimator &; has BRE.

. . . L . D
@ More generally? Again consider rare maxima, and to simplify, consider X; = X.

o If 3 asymptotic dependence (A > 0), then @; doesn’t have BRE.
o If asymptotic independence (A = 0), need to look at residual tail index n:
o BREif n < 1/2.
o LEifn=1/2.
o For exchangable Archimedean copulas with generator ¢, we have BRE if ¥~ € C? and
(¥*°)" is bounded at 0.
o For X ~ ELL(p, X, F) where F € MDA(Gumbel), we have conditions for when @; has
LE and when BRE. (This gives normal case.)

o The estimator (m) from has BRE.

QACEMI
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Asymptotic independence

Look at
1— Gj(v,v)

Aj = lim P(X; > v | X; > v) = lim =——=2

where \j € [0,1] is called the (upper) tail dependence parameter (or coefficient).

The canonical examples are the (non-degenerate) bivariate normal distribution for Al,
and the bivariate Student t distribution for AD.

For a1 to have BRE, all pairs in X must exhibit Al. This is a necessary but not sufficient
condition, therefore we will employ a more refined tail dependence measurement.
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Residual tail index

Ledford and Tawn first noted that the joint survivor functions for a wide array of
bivariate distributions satisfy

P(Xi >, X >7) ~ L(y)y ™" asy— o0
for a slowly-varying L(v) and an n € (0, 1].

In other words, this says that P(X; > v, Xj > ) is regularly-varying with index 1/n. The
index is called the residual tail index (or, confusingly, the coefficient of tail dependence).

*ACEMJ'
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Efficiency (using residual tail index)

If the Ledford & Tawn form is satisfied for the maximal pair of X, that is,

max P(X; >, Xj > 7) ~ L(y)y =" asy — o0,
i<j

then the estimator iy has:
Q BRE ifn<1/2orifn=1/2 and L(vy) /> oo as y — o0,
Q LEifn=1/2.

Ly "

y—s00 maxy P(Xx > )%~ e (y71)2E

i<iP(X; > v, X; >
lim sup M< (Xi >~, X >7)

= limsup = limsup L(’y)’y27%76 =0
~y—r00

SFACEMJS
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Copulas and their residual tail indices

Residual tail dependence index 1 and L(x) for various copulas. This is a subset of Table 1
of [heffernan2000directory] (their row numbers are preserved).

# Name n L(x) # Name n L(x)
1 | Ali-Mikhail-Haq | 0.5 147 11 Joe 1 2-27°
2 BB10 in Joe 0.5 1+0/7 12 BB8 in Joe 1]2-2(1-9)°7"
3 Frank 05| §/(1—e?) 13| BB6inJoe |1 2 — 21/(59)
4 Morgenstern 0.5 1+71 14 | Extreme value | 1 2-V(1,1)
5 Plackett 0.5 1) 15 B11 in Joe 1 0
6 Crowder 05 | 1+(0-1)/7 16 BB1 in Joe 1 228
7 BB2 in Joe 05| 6(6+1)+1 17 | BB3inJoe |1 2 —2Y/0
8 Pareto 0.5 1494 18 | BB4inJoe |1 2718
9 Raftery 0.5 §/(1—6) 19 | BB7inJoe |1 22/
Copulas with BRE. Copulas without BRE.
QACEMJ'
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Archimedean copulas

Cluty ... un) = (P(ur) + -+ ¥(un)).

Theorem (Thm. 3.4 of [charpentier2009tails])

Let (Ui, ..., U,) ~ C where C is an Archimedean copula with generator 1. If " is
twice continuously differentiable and its second derivative is bounded at 0 then Vi # j

> 1 — > 1 —
lim P(U > 1 ux1,2UJ >1— uxz) -
u—0 u

for any 0 < x1, x2 < c0.

| N

Corollary

Consider using a1 for a distribution with common marginal distributions and a copula C.
If C satisfies the conditions of Theorem 2 then a1 has BRE.

V.

*ACEMJ'
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Efficiency (cases)

o If the A; are independent events then the estimator &; has BRE.

. . . L . D
@ More generally? Again consider rare maxima, and to simplify, consider X; = X.

o If 3 asymptotic dependence (A > 0), then @; doesn’t have BRE.
o If asymptotic independence (A = 0), need to look at residual tail index n:
o BREif n < 1/2.
o LEifn=1/2.
o For exchangable Archimedean copulas with generator ¢, we have BRE if ¥~ € C? and
(¥*°)" is bounded at 0.
o For X ~ ELL(p, X, F) where F € MDA(Gumbel), we have conditions for when @; has
LE and when BRE. (This gives normal case.)

o The estimator (m) from has BRE.

QACEMI

Efficient simulation for dependent rare events



Numerical example: multivariate normal (R = 106)

- v
Estimators 5 4 6 8
a 5.633e-02 1.005e-04 3.838e-00  2.48le-15
B 5.651e-02 1.140e-04 0* 0*
a 9.100e-02 1.267e-04  3.946e-00  2.488e-15
a—q 4.000e-02 1.055e-04 3.827e-09  2.480e-15
o 5.650e-02 1.047e-04 3.946e-00%  2.488e-15%
s 5.605e-02 1.075e-04 3.827e-00%  2.480e-15%
al! 5.637e-02 1.096e-04 3.837e-09  2.48le-15
o 5.633e-02 1.095e-04 3.838e-09  2.48le-15

(Bita) 5.634e-02 1.095¢-04 3.838e-00  2.480e-15
(Bfa) 563102 1.095¢-04 3.838e-09 2.481e-15

Estimates of P(M > «) where M = max; X; and X ~ N4(04,X), p = 0.75.

QACEMJ'
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Numerical example: multivariate normal (R = 106)

, g
Estimators 5 4 6 8
ao 3.109¢-03  4.075e-02 1* 1*
@ 6.154e-01 1.566e-01 2.822¢-02  3.142¢-03
a—q 2.899e-01 3.665e-02 2.827¢-03  1.147e-04
& 2.977¢-03 4.420e-02 2.822¢-02%  3.142¢-03*
o 5.077e-03 1.839e-02 2.827e-03* 1.147e-04*
alt 6.918¢-04 4.639e-04 1747e-04  2.192e-05
af! 7.838e-08 8.647e-05  1.237e-05  4.010e-08

.

(B11a) 6.564e-05 7.046e-05  6.227e-05 4.362e-05
(B21a) 3.493e-04 1.593e-05  6.883e-06 3.340e-07

Relative errors of the estimates of P(M > v) where X ~ N3(04,X), p = 0.75.

*ACEMJ'
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Numerical example: multivariate Laplace (R = 10°)

Estimators 6 8 10 12
a 4.093e-04  2.435e-05 1.442¢-06  8.526e-08

ao 3.010e-04  2.000e-05  2.000e-06 0*
a 4130e-04  2.441e-05 1.443¢-06  8.527¢-08
a—q 4.093e-04  2.435e-05 1442¢-06  8.526e-08
o 4120e-04  2.441e-05% 1.443e-06% 8.527e-08*
an 4.093e-04*  2.435e-05% 1.442¢-06% 8.526e-08*
alt 4.093e-04  2.435e-05 1.442e-06  8.526e-08
(Biia)  4.003e-04  2435e-05 1.442¢-06  8.526e-08

Estimates of P(M > ~) where M = max; X; and X ~ L, d = 4.
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Numerical example: multivariate Laplace (R = 10°)

: gl
Estimators 6 8 10 12
G 4.472¢-02  1.786e-01  3.873e-01 1*
o 8.950e-03  2.473e-03  6.987e-04  2.003e-04
a—q 8.067¢-05  8.266e-06  8.757e-07  9.506e-08
& 6.516e-03  2.473e-03* 6.987e-04*  2.003e-04*
s 8.067e-05%  8.266e-06% 8.757e-07*  9.506e-08*
alt 8.470e-06  1.023e-05  3.019e-05  1.577e-05

(Bita) 451505 2.948¢-05 2.151e06  2.833¢-06

Relative errors of the estimates of P(M > ~) where X ~ L, d = 4.
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Multivariate Laplace

Let X ~ L. We can define this distribution by

XEZVRY, where Y ~ Ny(0,1),R~ E(1),Y L R.

The distribution has been applied in a financial context [huang2003rare], and is
examined in [eltoft2006multivariate, kotz2001asymmetric]. From the former we have
that the density of L is

fx(x) = 2(27r)7d/2K(d/2),1 (\/ 2xTx) ( %XTX)I_(d/Q)
where K,(-) denotes the modified Bessel function of the second kind of order n.

Sampling X_; | X; > ~ for the Laplace distribution
o Xi — E(ﬁ)
o Yix + ZG(V2|Xi|,2X?).
o Y.+ Nyg_1(0,1,-1).
o return X;Y_;/Yi x..
QACEMJ'
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Discussion

We begin with some trends which we expected to find in the results:

©

all estimators outperform crude Monte Carlo ap,

©

the estimators which calculate P(X; > ) outperform those which do not,

o the estimators which calculate P(X; > v, X; > ) outperform those which only use
the univariate P(X; > 7),

o the importance sampling estimators improve upon their original counterparts,
o the second-order IS improves upon the first-order IS.
Also noticed in the performance of the & estimators:

o the @i and @» estimators often degenerated (i.e. had zero variance) to @ and a—gq
respectively,

o the degeneration begin for smaller v when the X had a weaker dependence structure.

QACEMJ'
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Limitations

We do assume knowledge of marginal distributions. If we just have joint pdf...
Asymptotic properties - finite-term accuracy

Who actually wants to estimate probabilities of events under 10707

Who actually believes probability estimates of events under 1071°?
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Limitations

We do assume knowledge of marginal distributions. If we just have joint pdf...
Asymptotic properties - finite-term accuracy

Who actually wants to estimate probabilities of events under 107107

Who actually believes probability estimates of events under 1071°?
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...
Thanks for listening!

ﬁAcst
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