A note on the cross-entropy method

Patrick Laub, Institut de Science Financière et d'Assurances

March 16, 2019

1 When *X* is a random variable, and we only have one parameter to fit

The goal is to find

$$\ell = \mathbb{P}(X > \gamma).$$

Say that $f(\cdot)$ is the p.d.f. of *X*, and $f(\cdot; v)$ is the p.d.f. inside the chosen family of distributions with parameter *v*.

1. Choose a starting point v_0 , R (e.g. $R = 10^6$), and ρ (e.g. $\rho = 0.10$).

2. For
$$i = 1, 2, ...$$
:

- 1. Simulate $X^r \stackrel{\text{i.i.d.}}{\sim} f(\cdot; v_{i-1})$ for $r = 1, \ldots, R$.
- 2. Find the quantile γ_i = Quantile({ X^1, \ldots, X^R }, 1 ρ).
- 3. If $\gamma_i \geq \gamma$, set $v_* = v_{i-1}$, and quit the loop.
- 4. Set

$$v_{i} = \arg\max_{v} \frac{1}{R} \sum_{r=1}^{R} 1\{X^{r} > \gamma_{i}\} \frac{f(X^{r})}{f(X^{r}; v_{i-1})} \log[f(X^{r}; v)]$$

by letting v_i be the solution to

$$\sum_{r=1}^{R} 1\{X^{r} > \gamma_{i}\} \frac{f(X^{r})}{f(X^{r}; v_{i-1})} \frac{\mathrm{d}}{\mathrm{d}v} \left\{ \log[f(X^{r}; v)] \right\} = 0.$$

3. Return the result of IS with $f(\cdot; v_*)$ proposal.

2 When *X* is a random variable, and we have *p* distributional parameters to fit, *p* > 1

The goal is to find

$$\ell = \mathbb{P}(X > \gamma)$$

Say that $f(\cdot)$ is the p.d.f. of *X*, and $f(\cdot; \mathbf{v})$ is the p.d.f. inside the chosen family of distributions with parameter vector $\mathbf{v} = (v_1, \dots, v_p)$.

- 1. Choose a starting point \mathbf{v}_0 , *R* (e.g. $R = 10^6$), and ρ (e.g. $\rho = 0.10$).
- 2. For $i = 1, 2, \ldots$
 - 1. Simulate $X^r \stackrel{\text{i.i.d.}}{\sim} f(\cdot; \mathbf{v}_{i-1})$ for $r = 1, \ldots, R$.

- 2. Find the quantile γ_i = Quantile ({ X^1, \ldots, X^R }, 1ρ).
- 3. If $\gamma_i \geq \gamma$, set $\mathbf{v}_* = \mathbf{v}_{i-1}$, and quit the loop.
- 4. Set

$$\mathbf{v}_i = \arg\max_{\mathbf{v}} \frac{1}{R} \sum_{r=1}^R \mathbb{1}\{X^r > \gamma_i\} \frac{f(X^r)}{f(X^r; \mathbf{v}_{i-1})} \log[f(X^r; \mathbf{v})]$$

by letting \mathbf{v}_i be the solution to

$$\sum_{r=1}^{R} \mathbb{1}\{X^r > \gamma_i\} \frac{f(X^r)}{f(X^r; \mathbf{v}_{i-1})} \boldsymbol{\nabla}_{\mathbf{v}} \Big\{ \log[f(X^r; \mathbf{v})] \Big\} = \mathbf{0}_p$$

where $\nabla_{\mathbf{v}} = (\frac{d}{dv_1}, \dots, \frac{d}{dv_p})$ and $\mathbf{0}_p$ is the vector of p zeros.

3. Return the result of IS with $f(\cdot; \mathbf{v}_*)$ proposal.

3 When X is a random vector, and we have *p* distributional parameters to fit, *p* > 1

The goal is to find

$$\ell = \mathbb{P}(H(\mathbf{X}) > \gamma)$$

where $\mathbf{X} = (X_1, ..., X_n)$ and $H : \mathbb{R}^n \to \mathbb{R}$. Say that $f(\cdot)$ is the joint p.d.f. of \mathbf{X} , and $f(\cdot; \mathbf{v})$ is the joint p.d.f. inside the chosen family of distributions with parameter vector $\mathbf{v} = (v_1, ..., v_p)$.

- 1. Choose a starting point \mathbf{v}_0 , R (e.g. $R = 10^6$), and ρ (e.g. $\rho = 0.10$).
- 2. For $i = 1, 2, \ldots$:
 - 1. Simulate $\mathbf{X}^r \stackrel{\text{i.i.d.}}{\sim} f(\cdot; \mathbf{v}_{i-1})$ for $r = 1, \ldots, R$.
 - 2. Find the quantile $\gamma_i = \text{Quantile}(\{H(\mathbf{X}^1), \dots, H(\mathbf{X}^R)\}, 1 \rho).$
 - 3. If $\gamma_i \geq \gamma$, set $\mathbf{v}_* = \mathbf{v}_{i-1}$, and quit the loop.
 - 4. Set

$$\mathbf{v}_{i} = \arg\max_{\mathbf{v}} \frac{1}{R} \sum_{r=1}^{R} \mathbb{1}\{H(\mathbf{X}^{r}) > \gamma_{i}\} \frac{f(\mathbf{X}^{r})}{f(\mathbf{X}^{r}; \mathbf{v}_{i-1})} \log[f(\mathbf{X}^{r}; \mathbf{v})]$$

by letting \mathbf{v}_i be the solution to

$$\sum_{r=1}^{R} \mathbb{1}\{H(\mathbf{X}^{r}) > \gamma_{i}\} \frac{f(\mathbf{X}^{r})}{f(\mathbf{X}^{r}; \mathbf{v}_{i-1})} \boldsymbol{\nabla}_{\mathbf{v}} \Big\{ \log[f(\mathbf{X}^{r}; \mathbf{v})] \Big\} = \mathbf{0}_{p}$$

where $\nabla_{\mathbf{v}} = (\frac{d}{dv_1}, \dots, \frac{d}{dv_p})$ and $\mathbf{0}_p$ is the vector of p zeros.

3. Return the result of IS with $f(\cdot; \mathbf{v}_*)$ proposal.

This is the most general form of the algorithm. The most general form of the optimization version is below.

3.1 For optimization, the general form

The goal is to find

$$H^* = \max_{\mathbf{x}} H(\mathbf{x})$$

where $\mathbf{x} = (x_1, \dots, x_n)$ and $H : \mathbb{R}^n \to \mathbb{R}$. Say that $f(\cdot; \mathbf{v})$ is the joint p.d.f. inside the chosen family of distributions with parameter vector $\mathbf{v} = (v_1, \dots, v_p)$.

- 1. Choose a starting point \mathbf{v}_0 , *R* (e.g. $R = 10^6$), and ρ (e.g. $\rho = 0.10$).
- 2. For $i = 1, 2, \ldots$:

 - 1. Simulate $\mathbf{X}^r \stackrel{\text{i.i.d.}}{\sim} f(\cdot; \mathbf{v}_{i-1})$ for $r = 1, \dots, R$. 2. Find the quantile $\gamma_i = \text{Quantile}(\{H(\mathbf{X}^1), \dots, H(\mathbf{X}^R)\}, 1 \rho)$.
 - 3. Set

$$\mathbf{v}_{i} = \arg\max_{\mathbf{v}} \frac{1}{R} \sum_{r=1}^{R} \mathbb{1}\{H(\mathbf{X}^{r}) > \gamma_{i}\} \log[f(\mathbf{X}^{r}; \mathbf{v})]$$

by letting \mathbf{v}_i be the maximum-likelihood estimate fit to the elite samples.

- 4. Calculate $H_i^* = \max\{H(\mathbf{X}^1), \dots, H(\mathbf{X}^R)\}$. 5. If H_i^* has not increased much recently (compare it to $H_{i-1}^*, H_{i-2}^*, \dots$) then quit now, giving $H^* \approx \max\{H_1^*, \ldots, H_i^*\}$.