
Rare event estimation: Quiz 3

Email answers & code to Patrick Laub before 5pm on March 29

1. These questions consider the toy problem from the lectures ` = P(Z > 5)
for Z ∼ Normal(0, 1).

(a) Write some code, or simply copy it from the lectures, which samples
from g∗(x) = 1{x > 5}fZ(x)/` using MCMC with transition kernel

q(xr | xr−1) =
1

2λ
exp

{
−|xr − xr−1|

λ

}
.

In other words, use a random walk sampler where jumps are Laplace(λ)-
sized.

(b) The MCMC algorithm is an approximate algorithm, and samples
generated using it are not as valuable as exact i.i.d. samples generated
using other methods (like acceptance-rejection). To quantify this
difference, one can calculate the effect sample size (ESS) as

ESS =
R

1 + 2
∑∞
i=1 ρ(i)

where ρ(i) is the (auto-)correlation between each sample Xr and the
sample Xr−i) which lags behind it by i.

Run MCMC multiple times where each run uses a different value of
λ using a grid so that 0 < λ and λ ≤ 10. Calculate the ESS for each
λ, and report the λ∗ which corresponds to the best λ (the one which
gives the largest ESS).

Some R code which implements the ESS calculation is attached in
the appendix below; feel free to use this.

(c) Calculate the fraction of proposals which were accepted using this
best λ∗.

Hint: the diff function evaluated on a vector {X1, . . . , XR} returns
{X2 − X1, X3 − X2, . . . , XR − XR−1}, and if the i-th proposal is
rejected we’ll have Xi = Xi−1.
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2. These questions consider ` = P(M > 3) where M = max{X1, X2} for
X = (X1, X2) ∼ Normal(0,ΣM ) where ΣM = [1, 0.8; 0.8, 1]. This is the
same problem from Quiz 1.

(a) Write a function which takes a number σ2 > 0 and returns an MCMC
sample from the bivariate distribution

g∗(x1, x2) =
1{max{x1, x2} > 3}f02,ΣM

(x1, x2)

`

where fµ,Σ(x) denotes the p.d.f. of the d-dimensional (here d = 2)
normal distribution with mean µ and covariance Σ,

fµ,Σ(x) =
1√

(2π)d det(Σ)
exp

{
−1

2
(x− µ)2Σ−1(x− µ)2

}
.

Use the transition kernel q(y | x) = fx,σ2I(y). In other words, use a
random walk sampler, where proposal points are generated by adding
Normal([0, 0], [σ2, 0; 0, σ2])-sized jumps to the current point.

Start the MCMC at X0 = (3.1, 3.1), and generate 103 + 105 points.
Discard the first 103 points, this is our burn in period. Have the
function return the remaining 105 points.

(b) Run improved cross entropy (ICE) to estimate ` by searching inside
the

f(x; v) =
1√

2 det(ΣM )
exp

{
−1

2
(x− v12)2Σ−1M (x− v12)2

}
family for the optimal parameter v∗. Note, this is the ‘improved’
version of the Question 4 from Quiz 1.

(c) Compare the ICE v∗ solution against your (or my) equivalent result
using the original cross-entropy method from Quiz 1. If they differ
significantly, try using different values of σ2 in the MCMC sampling
above to get the two algorithms to return roughly the same value.
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A Effective sample size code

Adapted from https://github.com/tpapp/MCMCDiagnostics.jl/blob/master/

src/MCMCDiagnostics.jl:

a u t o c o r r e l a t i o n <− function (x , k , v ) {
R <− length ( x )
x1 <− ( x [ 1 : (R−k ) ] ) ; x2 <− ( x [(1+k ) :R] )
V <− sum( ( x1 − x2 )ˆ2) / length ( x1 )
return (1 − V / (2∗v ) )

}

e s s e s t imate <− function ( x ) {
v <− var ( x ) ; R <− length ( x )
tau inv <− 1 + 2 ∗ a u t o c o r r e l a t i o n (x , 1 , v )
K <− 2
while (K < R − 2) {

d e l t a <− a u t o c o r r e l a t i o n (x , K, v ) +
a u t o c o r r e l a t i o n (x , K + 1 , v )

i f ( d e l t a < 0) {
break

}

tau inv <− tau inv + 2∗d e l t a
K <− K + 2

}

return ( R ∗ min(1 / tau inv , 1) )
}
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